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Abstract

Tensor decomposition is one of the well-known approaches
to reduce the latency time and number of parameters of a pre-
trained convolutional neural network (CNN) model. How-
ever, in this paper, we propose an approach to use tensor de-
composition to reduce training time of training a model from
scratch. This paper explores one type of tensor decomposi-
tion: Tucker decomposition. In our approach, we train the
model from scratch (i.e., randomly initialized weights) with
its original architecture for a small number of epochs, then
the model is decomposed, and then continue training the de-
composed model till the end. There is an optional step in
our approach to convert the decomposed architecture back
to the original architecture. We present results of using this
approach on both CIFAR10 and Imagenet datasets, and show
that there can be upto 1.65× speed up in training time with
accuracy drop of upto 0.82% only. The work in this paper
is considered one step towards enabling training on IoT de-
vices. This training acceleration approach is independent of
hardware and is expected to have similar speed ups on both
CPU and GPU platforms. The code is available online at
https://github.com/mostafaelhoushi/tensor-decompositions.

Introduction
While deep learning has obtained high accuracy in computer
vision, natural language understanding, and many other
fields, one of its main challenges is the extensive compu-
tation cost required to train its models. A typical neural net-
work architecture may take upto 2 weeks to train on the Ima-
genet dataset. Using distributed training, a ResNet50 model
can train in 6 minutes, but at the financial and energy cost
of 1024 GPUs (Jia et al. 2018). The energy required to train
the average deep learning model is equivalent to using fos-
sil fuel releasing around 78,000 pounds of carbon, which is
more than half of a car’s output during its lifetime (Strubell,
Ganesh, and McCallum 2019). The financial and time costs
of training deep learning models is making it increasingly
difficult for small- and medium- sized companies and re-
search labs to explore various architectures and hyperparam-
eters.

While there has been extensive development to meet the
increasing computation cost of training by improving hard-
ware design of GPUs - as well as other forms of special-

ized hardware - and advancements in distributed training us-
ing large number of servers and GPUs, there has been less
advancement in reducing the computation costs of training.
(Schwartz et al. 2019) estimated that from 2012 to 2018 the
computations required for deep learning research have esti-
mated 300,000 ×.

In this paper we propose a hardware independent method
to reduce the computation cost of training using tensor de-
composition. A lot of research has been made on compress-
ing pre-trained models using tensor decomposition. How-
ever, to the best of our knowledge, this paper is the first to
propose to use tensor decomposition during training to re-
duce the computation cost and training time.

In this paper, we will first present related work in reducing
the computation cost and latency time of models during in-
ference, followed by related work in reducing training time.
Then, we will explain tensor decomposition, and one of its
specific methods - Tucker decomposition - that we use in our
solution. We then present our proposed solution to decom-
pose the model during training, followed by the results and
performances on CIFAR10 and Imagenet datasets.

Related Work
Inference Acceleration
Method to reduce CNN model size and speeding up train-
ing and/or inference which fall in several categories. First, is
searching or designing architectures that have lower num-
ber of parameters and hence reduce computation latency
time while maintaining reasonable prediction accuracy, e.g.,
SqueezeNet, MobileNets, and MobileNetV2. Second, is re-
placing a portion or all of convolution operations in a model
with operations that require less computation time or less pa-
rameters, e.g., Binarized Neural Networks (Courbariaux and
Bengio 2016). Third, is to quantize the parameters of regular
convolution operations from 32-bit floating point presenta-
tion to smaller number of bits, such as 8-bit integers. Fourth
is pruning: removing a portion of convolution filters in each
layer - usually - based on some heurestic, e.g., (Liu et al.
2019). Nevertheless, although training a pruned architecture
is usually faster than training the original model, obtaining
the pruned architecture in the first place requires training the
full model in the first place till the end, while our proposed



(a) Exact Decomposition

(b) Approximate Decomposition

Figure 1: Singular Value Decomposition.

Figure 2: Tucker Decomposition

solution only requires training the first 10 or 30 epochs be-
fore compressing.

The fifth categroy is tensor decomposition: separating a
regular convolution operation into multiple smaller convo-
lutions whose combined number of parameters or combined
latency is less than that of the original operation. This will
be explained in the next subsection.

Tensor Decomposition
Tensor decomposition is based on a concept of linear algebra
known as Singular Value Decomposition (SVD) that states
that any matrix, W , whose dimensions are - without loss of
generality - m×m can be expressed as:

W = USV T (1)

As shown in Figure 1, the dimensions of U , S, and V are
m × k, k × k, m × k. S is referred to as the unitary matrix
and it is a diagonal matrix. Each value along the diagonal
represent the “importance” of the corresponding column of

U and row of V . The SVD algorithm specifies how to cal-
culate the values of U , S, V matrices in order to hold this
equality. k is known as the rank of the matrix W . Most of
the time, the rank of a m × m matrix is K = m. If one or
more rows and columns of the matrix are linearly dependent
on other rows and matrices in the matrix, then the rank is
k < m. However, in the context of neural networks where
the values of the weight matrices are updated during train-
ing, this condition is unlikely to happen.

In order to decompose W into terms that have fewer num-
ber of parameters, we need to set the rank of the transforma-
tion k̃ to be less than the rank, k of the matrix W :

W ≈ Ũ S̃Ṽ T (2)

This results in an approximation. In the extreme case of
choosing the rank of decomposition k̃ = 1, the matrix can
be represented as m × 1 + 1 × m = 2m compared to
m × m = m2 parameters of the original W matrix. For
large values of m, 2m << m2 and hence the storage of the
decomposed representation and FLOPs of matrix operation
on the decomposed representation is much lower.

The rank has to be selected in an optimal manner in order
to balance between the approximation error introduced and
the compression obtained. Different methods of rank selec-
tion are explained in the following sub-sub-section.

In the context of neural networks, tensor decomposition
extends SVD to the 4-dimensional matrices of weights of
convolution operators that have dimensions: Cout × Cin ×
h × w, where Cout is the number of channels of the output
of the operator, Cin is the number of channels of the input
image, h is the height of each filter, and w is the width of
each filter. There are various types of tensor decompositions:
spatial decomposition (Lin et al. 2018), channel decomposi-
tion (Zhang et al. 2016), depthwise decomposition (Guo et
al. 2018), Tucker decomposition (Tucker 1966). The mathe-
matical expression of each decomposition type and the their
derivations from SVD is out of the scope of this paper but
they can be found in the reference of each decomposition
method. This paper uses Tucker decomposition, and will be
explained in more detail in Section .

Rank Selection Some researchers have used time-
consuming trial-and-error to select the optimal rank of de-
composition of each convolution layer in a network, by
analyzing the final accuracy of the model. (Denton et al.
2014) used alternate least squares. (MacKay 1991) proposed
a data-driven one-shot decision using empirical Bayes. In
this paper, we used variational Bayesian matrix factorization
(VBMF) (Nakajima et al. 2012).

Training Acceleration
To speed up training neural networks, the main research
efforts in industry gear towards designing and enhancing
hardware platforms, e.g., vector units in CPUs, NVIDIA’s
Graphical Processing Units (GPUs), and Googles Tensor
Processor Unit (TPU). Another main method to accelerate
training is distributed training: training over multiple GPUs
on the same workstation, or training over multiple worksta-
tions, with each workstation having one or more GPUs.



Our proposed method in accelerating training is hardware
independent, i.e., does not require specific hardware design.
It can build upon the speed ups by faster hardware designs
and distributed approaches.

Other hardware independent approaches in literature in-
clude (Sun et al. 2017)that presented a method to speed up
training by only updating a portion of the weights during
each backpropagation pass. However, the results are only
shown for the basic MNIST dataset. (de Gusmo et al. 2016)
presented an approach to accelerate training by starting with
downsampled kernels and input images to a certain number
of epochs, before upscaling to the original input image size
and kernel size.

Proposed Method
We use the end-to-end tensor decomposition scheme simi-
lar to that proposed by (Kim et al. 2016) that in turn uses
the Tucker decomposition algorithm proposed by (Tucker
1966) and the the rank determined by a global analytic so-
lution of variational Bayesian matrix factorization (VBMF)
(Nakajima et al. 2012):

1. Initialize Model: We start with a model architecture from
scratch (i.e., initialized with random weights).

2. Initial Training: We then train the weights of the model
for a certain number of epochs, e.g., 10 epochs.

3. Decompose: Then, we decompose the model and its
weights using Tucker decomposition and VBMF rank se-
lection. The decomposed model has a smaller number of
weights then the original model, and hence lower train-
ing (and inference time), and a sudden drop in accuracy is
expected at that point.

4. Continue Training: Then, we continue updating those
decomposed weights till the end of training.

5. Reconstruction [Optional]: Before the end of training by
a certain number of epochs (e.g., 10) we reconstruct the
original architecture by combining the weight matrices of
each set of decomposed convolution operations. The ac-
curacy at this point does not change, as this reconstruction
step is lossless.

6. Fine Tuning [Optional]: Train the reconstructed model
for a few more epochs.
Tucker decomposition is illustrated in Figure 2. To ex-

plain Tucker decomposition, we first express a regular con-
volution operation of weight W with dimensions Cout ×
Cin × h × w, acting on an input tensor I with dimensions
H×W×Cin to produce an output tensor O with dimensions
H ′ ×W ′ × Cout:

Ox′,y′,cout =

h∑
i=1

w∑
j=1

Cin∑
c=1

W i,j,cin,coutIxi,yj ,cin (3)

where:

xi = (x′ − 1)S + i− P (4)

yj = (j′ − 1)S + j − P (5)
(6)

where S is the stride and P is the padding.
Tucker decomposition converts this convolution operation

into 3 consecutive convolutions:

O(1)
x,y,k1 =

Cin∑
c=1

W (1)
c,k1Ix,y,c

(7)

O(2)
x′,y′,k2 =

h∑
i=1

w∑
j=1

K1∑
k1=1

W (2)
i,j,k1,k2

O(1)
xi,yj ,k1

(8)

Ox′,y′,cout
=

K2∑
k2=1

W (3)
cout,k2

O(2)
x′,y′,k2

(9)

The first and third convolutions are pointwise convolu-
tions, while the second convolution is a regular spatial con-
volution with input channels and output channels reduced to
K1 and K2 respectively. The Tucker decomposition method
described in (Tucker 1966) derives the equations to deduce
the weights W (1), W (2), W (3) from W . The compression
ratio of the decomposition is expressed as:

M =
hwCinCout

CinK1 + hwK1K2 + CoutK2
(10)

and

E =
hwCinCoutH

′W ′

CinK1HW + hwK1K2H ′W ′ + CoutK2H ′W ′

(11)
Due to incorporating the height and width of the input and
output tensors into the numerator and denominator of the
speedup equation, we will notice that speedup in training
time is lower than compression ratio.

The values of K1 and K2 are determined by the rank se-
lection method, which is in our case is VBMF. It is out of
scope to explain the method here.

It is noteworthy that unlike other compression methods
such as pruning and distillation, tensor decomposition can be
reversed to retain the original architecture without a change
in accuracy in a straightforward manner: by simply perform-
ing matrix multiplication of the decomposed matrices. The
last 2 steps in the process are only to show that the overall
training process can retain the original, in case if someone
would like to use the original architecture - due to some rea-
son - rather than the decomposed smaller architecture.

Experiments
We have tested our approach by training VGG19,
DenseNet40, ResNet56 on CIFAR10 dataset, and ResNet50
in Imagenet dataset. When training on CIFAR10, the batch
size used was 128, and the learning rate was initialized at
0.1, reduced to 0.01 at the 100th epoch, and to 0.001 at the
150th epoch. When training on Imagenet, the batch size was
256 and the learning rate was set to 0.1.

In addition to training from scratch the original model, as
well as training the decomposed model at an early epoch,



and the reconstructed model at a late epoch, we also de-
composed the original model after it completed training, and
fine-tuned for an additional number of epochs. We did this to
compare the accuracy and number of parameters of a model
decomposed early during training versus a model decom-
posed after it completed training.

The results are shown in Tables 1, 2, 3 and 4 and Figures
3, 4, 5, and 6. In those tables, “Dec.” is abbreviation for de-
composed, and “Rec.” is abbreviation for reconstructed.

Results
For VGG19 on CIFAR10, we notice from Table 1 that there
was more than 2× speedup in training time, a 20× com-
pression of parameter size, but a drop of almost 2% when
decomposed from the 10th epoch. From Figure 3 we no-
tice, a sudden drop in accuracy when decomposition hap-
pens, however that drop is compensated for after less than
1000 seconds. When decomposing from later epochs, there
was a general trend of decreasing accuracy drop in return for
a reduction in model size compression. It may seem that in
later epochs, the EVBMF detects more noise in the weight
values - as the weights try to fit the training data with higher
accuracy and cover more corner cases - and hence selects
a higher rank for decomposition. Surprisingly, the scenarios
for reconstructing at the 190th epoch, and for decomposing
after complete training, did not result in higher best accuracy
than decomposing at the 10th epoch without reconstruction.

For DenseNet40 on CIFAR10, we notice a similar drop
in accuracy as in VGG19, but less training speedup, despite
more than 3× reduction in the number of parameters. This
is expected from the compression and speedup ratios ex-
pressed in Equations 10 and 11. The results for DenseNet40
also show that both accuracy and model compression are
higher for decomposing during training than decomposing
after training.

On the other hand, as shown in Table 3, decomposing
ResNet56 resulted in an increase accuracy, but less than 10%
reduction in training time. This is due to the existence of a
large portion of pointwise convolutions that are not possible
to decompose using Tucker decomposition.

For Imagenet dataset, the drop in accuracy was less than
0.2% for ResNet50 but the reduction in training time was
negligible. Furthermore, decomposing at the 30th epoch re-
sulted in better accuracy than decomposing after complete
training.

Conclusion and Future Work
In this paper we have shown that to compress a model using
tensor decomposition, we do not have to wait till training
ends. We have shown the decomposing at the 10th or 20th
epoch of training, results in accuracy close to - and some-
times higher than - that of the original model trained till the
end.

We have also shown that in all of the cases on CIFAR10
dataset, the size of a model decomposed after 10 or 20
epochs of training is smaller than that of the model decom-
posed after complete training. Moreover, we have shown
- for CIFAR10 - that training a decomposed model for

Table 1: Performance and size of VGG19 with different sce-
narios of training on NVIDIA Tesla K40c GPU on CIFAR10
dataset. The epoch at which decomposition or reconstruc-
tion happens is mentioned. The total number of epochs for
all scenarios is 200, except for the last case where decom-
position happens after the 200th epoch, and fine tuned for
another 40 epochs.

Model Accuracy Params
Training

Time

Best Final

Original 93.55% 93.56% 20× 106 4.77 hr

Dec. @ 10 91.69% 91.39% 749× 103 2.32 hr
Dec. @ 20 92.10% 91.89% 1.33× 106 2.75 hr
Dec. @ 30 91.85% 91.78% 1.69× 106 2.95 hr
Dec. @ 40 92.57% 92.43% 1.75× 106 3.04 hr
Dec. @ 50 92.51% 92.49% 1.73× 106 2.41 hr

Dec. @ 10
Rec. @ 190

91.69% 91.53% 749× 103 2.45 hr

Original
then Dec.

91.52% 91.36% 1.33× 106 4.77 hr
+ 0.49 hr

Table 2: Performance and size of DenseNet40 with different
scenarios of training and decomposition on NVIDIA Tesla
P100 GPU on CIFAR10 dataset. The total number of epochs
for all scenarios is 160, except for the last case where de-
composition happens after the 160th epoch, and fine tuned
for another 40 epochs.

Model Accuracy Params
Training

Time

Best Final

Original 94.00% 93.78% 1.06× 106 11.13 hr

Dec. @ 20 92.00% 91.82% 270× 103 8.62 hr

Dec. @ 20
Rec. @ 150

92.00% 91.96% 1.06× 106 8.83 hr

Original
then Dec.

91.49% 91.46% 441× 103 11.13 hr
+ 2.17 hr



Table 3: Performance and size of ResNet56 with different
scenarios of training on NVIDIA Tesla K40c GPU on CI-
FAR10 dataset. The epoch at which decomposition or recon-
struction happens is mentioned. The total number of epochs
for all scenarios is 200, except for the last case where de-
composition happens after the 200th epoch, and fine tuned
for another 40 epochs.

Model Accuracy Params
Training

Time

Best Final

Original 91.83% 91.69% 853× 103 4.39 hr

Dec. @ 10 92.16% 91.97% 508× 103 4.06 hr
Dec. @ 20 92.27% 92.07% 520× 103 4.10 hr
Dec. @ 30 91.66% 91.51% 556× 103 4.15 hr
Dec. @ 40 91.67% 91.50% 550× 103 4.14 hr
Dec. @ 50 91.65% 91.15% 550× 106 4.15 hr

Dec. @ 10
Rec. @ 190

92.16% 91.92% 853× 103 4.07 hr

Original
then Dec.

92.32% 92.22% 547× 103 4.39 hr
+ 0.85 hr

Table 4: Performance and size of ResNet50 with different
scenarios of training on NVIDIA Tesla K40c GPU on Ima-
genet dataset. The epoch at which decomposition or recon-
struction happens is mentioned. The total number of epochs
for all scenarios is 90, except for the last case where de-
composition happens after the 90th epoch, and fine tuned
for another 20 epochs.

Model Best Accuracy Params
Training

Time

Top1 Top5

Original 75.65% 92.85% 25.6× 106 185.4 hr

Dec. @ 30 75.34% 92.68% 17.6× 106 179.2 hr

Original
then Dec.

69.26% 89.38% 8.2× 106 185.4 hr
+ 20.56 hr

Figure 3: Training progress of VGG19 model on CIFAR10
dataset on NVIDIA Tesla K40c GPU for 200 epochs with
batch size 128.

Figure 4: Training progress of DenseNet40 model on CI-
FAR10 dataset on NVIDIA Tesla P100 GPU for 160 epochs
with batch size 128.

VGG and DenseNet architectures results in considerable
faster training time: more than 2× for VGG19 and 1.3× for
DenseNet40. However, the speedup obtained for ResNet ar-
chitecture was negligible.

For future work, there is a need to explore ways to re-
duce the accuracy drop in accuracy for our “decomposition-
in-training” approach for some models, and to increase the
training speedup for other architectures especially ResNet
by looking into solutions to decompose pointwise convolu-
tions.
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